Regulatory Mechanisms to Ensure Fuel Adequacy U.S. DOE Electricity Advisory Committee

Update on the New England Governors' Proposal to Invest in Strategic Infrastructure and Address Price Disparities

**New England States Committee on Electricity** 

September 25, 2014

# NESCOE

New England's Regional State Committee governed by a Board of Managers appointed by each of the New England Governors to represent the collective views of the six New England states on regional electricity matters

**Focus**: Resource Adequacy, System Planning & Expansion

Resources: 6 full-time staff with diverse disciplines & experience. Consultants, primarily for transmission engineering, economics & independent studies

More information: including filings & comments at www.nescoe.com

# Overview

Regional Challenges: Reliability & Economic Disparity

New England Governors' Infrastructure Initiative

Stakeholder interactions to date

> Status of state discussions and feedback requests

New England requires a reliable, secure, and cost-competitive electric system to sustain and grow its economy

#### "The challenges to grid reliability are not a question of if they will arise, but when - and when is now."

- Gordon van Welie, CEO, ISO-NE, 2014 Regional Electricity Outlook

Forbes on ISO-NE's 2013/2014 Winter Program: "The strategy was expensive and dirty, but it was probably the only reason New England avoided rolling blackouts this winter."



DOE EIA New England price increases triple the national average increase

#### **Incorporating the Winter 2013/2014 experience into the forecast exacerbates the reliability outlook**



Source: ICF International

#### Incorporating the Winter 2013/2014 experience into the forecast exacerbates the reliability outlook

- ICF International's "revised projections for gas supplies available to electric generation throughout the winter average nearly 500 MMcf/d lower" than previous projections.
- According to ICF, assuming 2013/14 winter temperatures and all pipelines operate at full capacity, gas supplies available to generators for the Winter 2014/2015 will be:
  - ➢ below 1,000 MMcf/d for ~45 days and
  - ➢ below 500 MMcf/d for 20 days.

These volumes represent approximately 40% and 20%, respectively, of the total gas-fired resources with commitments to provide capacity throughout the winter.

Source: April 29, 2014 ICF International presentation to ISO-NE Planning Advisory Committee

#### Market-Based Pipeline Solutions Not Meeting New England's Needs

Gas and Electricity Markets' Term Mismatch

- Nationally, the natural gas pipeline industry is based on long-term contractual commitments (i.e., at least 10 years, commonly 15-20 years)
- In New England, the electric industry is based on short-term market price signals (up to seven years for new resources, year-to-year for existing)

Recent pipeline projects in New England have had <u>zero</u> electric power generators subscribe for firm natural gas transportation

Spectra's AIM project was downsized from original design due to lack of subscription from 500 mmcf/ day to 342 mmcf/day

#### **Urgent Need for Action**

Absent significant change...

- New England's power system will be <u>increasingly vulnerable</u> to electric service disruptions
- Consumers will needlessly <u>pay more for energy</u> than consumers in nearby states and elsewhere
- Our region will remain at an unacceptable <u>economic and</u> <u>competitive disadvantage to neighboring states and regions</u>

After lengthy and robust regional discussions of potential solutions, no other comprehensive long-term solution has emerged to move New England beyond the status quo.

## Think *locally*...

The New England states are committed to continued, robust investment in clean energy and energy-alternative resources...

- Energy efficiency
- Distributed Renewable Generation
- Renewable Energy Standards
- Utility-scale development of Renewable Energy

Importantly, many of these investments generate local economic opportunities and create local jobs, while diversifying the regional fuel mix.

## ...and act Regionally

The problem is too big for any one state to solve – our energy system crosses borders, is highly integrated

- A **reliable** bulk electric system is a necessity to local health and safety, and to our shared economy.
- The New England states share common economic, environmental, and energy goals.
- New England is **competing** with other regions to attract new businesses and investment opportunities.

#### The New England Governors' Energy Infrastructure Initiative

The concept: to make strategic, coordinated investments in regional energy infrastructure that would

- Improve energy **system reliability**
- Diversify our energy supply portfolio
- Strengthen state and regional economic competitiveness
- Meet common energy and environmental policy goals
- Increase the supply of cleaner, no-to-low carbon generation
- Mitigate energy price volatility
- Achieve what no single state could do on its own.

#### **Energy Infrastructure Initiative**

# States have been working on two major energy incremental infrastructure investment strategies

- 1. Expand pipeline capacity to increase natural gas supply into New England, reducing supply constraints and associated energy price volatility.
- 2. Expand electric transmission to facilitate utility-scale development and delivery of no-to-low carbon energy resources.

#### **One Possible Means to Expand Natural Gas Capacity**

- Drive investment in pipeline infrastructure by allowing for recovery of costs through FERC electric tariffs.
- Costs shared appropriately across the six New England states.
- Ensure any new capacity will be made available in a manner that primarily benefits electricity customers.
- Tariff & cost allocation would have FERC process and require FERC approval.
- Request proposals, through a competitive solicitation, priced in increments of 200 mmcf/day to allow the evaluation of the cost of adding sufficient increments of additional capacity to achieve levels of at least 1bcf above 2013 levels.

#### **Expanding Transmission to Facilitate Clean Energy**

- Issue one or more coordinated RFPs to advance the development of transmission and delivery of at least 1000+ MWs of clean energy into New England.
- Transmission infrastructure costs recovered through ISO-NE tariff or through merchant projects in a manner that ensures costs are shared appropriately among the states.
- Depending on procurement structure, a subset of states (directly or through their utilities) may procure the power to ensure its delivery into the region.

Incremental infrastructure is in addition to, not in lieu of, sustained, aggressive investment in energy efficiency and other clean energy resources

- Four New England states Massachusetts, Connecticut, Rhode Island, Vermont are in the top ten states nationally for energy efficiency, based on ACEEE rankings. Massachusetts ranks first for the third consecutive year.
- Aggressive investment is reflected regional planning, at states' request:
  - The 2018-2023 ISO-NE EE Forecast shows MA will invest another \$3 billion over the time period for savings of at least 4.5 TWh and 605 MW.
  - The New England states together will invest \$5.7 billion for total savings of 9.1 TWh and 1.2 GW by 2023



#### **Clean energy policies and improving economics driving growth in distributed renewable resources**

- To determine the level of solar PV penetration New England is likely to experience in the next ten years, ISO-NE developed, at states' request, a solar PV forecast based on policies with reliable funding sources in each state.
- After discounting for uncertainty and seasonal capability, the region expects almost 500 MW of installed solar by 2018 and up to 632 MW by 2023.

| States                                | Estimated Summer SCC (MW) |       |       |       |       |       |       |       |       |       |       | Totals |
|---------------------------------------|---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
|                                       | Through 2013              | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  | 2021  | 2022  | 2023  | Totals |
| t                                     | 25.8                      | 16.2  | 13.8  | 18.5  | 12.1  | 12.1  | 4.6   | 4.6   | 4.6   | 4.6   | 4.0   | 120.9  |
| MA                                    | 126.6                     | 59.0  | 41.1  | 38.7  | 36.3  | 34.5  | 34.5  | 34.5  | 11.5  | 11.5  | 11.5  | 439.7  |
| ME                                    | 2.8                       | 0.7   | 0.7   | 0.6   | 0.6   | 0.6   | 0.6   | 0.6   | 0.6   | 0.6   | 0.6   | 8.8    |
| NH                                    | 2.9                       | 0.9   | 0.8   | 0.8   | 0.7   | 0.7   | 0.7   | 0.7   | 0.7   | 0.2   | 0.2   | 9.4    |
| RI                                    | 3.8                       | 2.6   | 1.9   | 1.3   | 0.4   | 0.4   | 0.4   | 0.4   | 0.4   | 0.4   | 0.4   | 12.4   |
| ٧T                                    | 12.6                      | 7.0   | 4.7   | 2.4   | 2.3   | 2.3   | 2.3   | 2.3   | 2.3   | 2.3   | 0.6   | 41.1   |
| Regional - Annual Summer SCC (MW)     | 174.5                     | 86.3  | 62.9  | 62.3  | 52.4  | 50.7  | 43.1  | 43.1  | 20.1  | 19.6  | 17.4  | 632.3  |
| Regional - Cumulative Summer SCC (MW) | 174.5                     | 260.8 | 323.7 | 386.0 | 438.4 | 489.0 | 532.1 | 575.2 | 595.3 | 614.9 | 632.3 | 632.3  |

#### ISO New England Interim Solar Photovoltaic (PV) Forecast

Source: ISO New England

## **Governors' Communications**

#### Six New England Governors' Statement, December 2013

- "To ensure a reliable, affordable and diverse energy system, we need investments in additional energy efficiency, renewable generation, natural gas pipelines, and electric transmission...."
- "…advance a regional energy infrastructure initiative that diversifies our energy supply portfolio while ensuring that the benefits and costs of transmission and pipeline investments are shared appropriately among the New England States"

#### Request to ISO-NE for technical, related support, January 2014

- Requested assistance to advance the development of transmission infrastructure that would enable delivery of 1200 MW - 3600 MW of no and/or low carbon emissions resources into New England electric system
- Requested assistance to develop and file tariffs with FERC enabling the recovery of the cost of firm natural gas pipeline capacity and infrastructure expansion

17

## **Stakeholder Interactions**

- Input from New England Gas-Electric Focus Group on gas level
  - > Generally advised to procure higher levels than states initially identified
- Constructive informal conversations by and between stakeholders and states
- NEPOOL Participants Committee monthly updates and NEPOOL Transmission Committee presentations on tariff proposals
- Meetings with each NEPOOL Sector
  - Common Issues/Questions
    - > Whether supportive or concerned about state action, generally consistent agreement that New England has a problem to solve
    - > Nature of the problem: reliability & economic competitiveness
    - > Markets vs. other means
    - > Role of ISO-NE
- Multiple requests for NEPOOL and New England Gas-Electric Focus Group comments on gas concepts, related issues

## Natural Gas Pipeline Development Concept

- On multiple occasions and in several forums, New England states have sought comment on concepts through which to develop incremental gas pipeline for electric power system reliability.
- States heard from about 27 stakeholders by end of July 2014
- Among other items, the states solicited comments on:
  - Amount of natural gas needed for system reliability
  - Characteristics of contracting entity and capacity manager to best serve electric customers and minimize transaction costs
  - Alternative configurations and structural means to minimize market distortions and reduce overall costs
  - Specific proposals offered by stakeholders
  - Specific going-forward market adjustments that would eliminate the need for state action to ensure reliability and economic competitiveness

## **Snapshot of status through July**

- ✓ States presented to NEPOOL a proposal on the tariff approaches for incremental transmission and natural gas pipeline to NEPOOL on June 20<sup>th</sup>
  - Looked toward a September NEPOOL vote and FERC filing with stakeholder input process thereafter
- Issued Request for Further Information on (Pipeline) Capacity Management, Other Concepts and Counterparty Interest
- ✓ Work on RFP draft to be released for public comment
- ✓ Once RFP issued proposals to be evaluated for cost effectiveness
  - Consumer benefits must outweigh consumer costs
- ✓ States continue to welcome comments, and any other input, at:

RegionalInfrastructure@nescoe.com

## **Current Status**

*July 31, 2014*: Massachusetts Legislature adjourned without acting on a bill to enable MA to procure levels of no-and/or low- carbon power

*August 1, 2014*: NESCOE requested from NEPOOL an extension of the schedule for consideration of proposed tariff mechanism to provide Massachusetts state officials time to evaluate options associated with moving forward with other states on regional solutions to the regional energy infrastructure challenges that have significant reliability and economic competitive implications for New England consumers

#### Current:

- State officials talking with each other to explore ways forward on regional solutions
- Massachusetts conducting a study of Massachusetts state-level solutions in light of state policies

## Appendix

Reliability & Economic Challenges Current Price Projections Natural Gas Pipeline Projects Recent Analysis



- FERC's *2012 State of the Market Report* identified New England "as a market particularly at risk for service disruption due to limited pipeline capacity into the region."
- "New England continues to be an area of focus" and constraints will persist.

- Winter 2013-14 Energy Market Assessment Report to the Commission, Oct. 2013



NORTH AMERICAN ELECTRIC

RELIABILITY CORPORATION

 Pipeline infrastructure constraints in New England create potential for gas supply interruption to gas-fired generators and a reliance on "back-up" fuel for reliability.
 - NERC 2013-2014 Winter Reliability Assessment

• "[P]otential gas unavailability threatens the reliability of the electric system due to the limited-capacity pipelines used to transport gas, potential gas supply interruptions, and the 'just- in-time' nature of the resource."

- ISO-NE, Strategic Planning Initiative, Addressing Gas Dependence, July 2012

• The region's "dependence on natural gas is poised to increase and our operational options are becoming more limited."

- Gordon Van Welie, Testimony Before the House Energy & Commerce Committee, Subcommittee on Energy, Mar. 19, 2013



"New England could face significant reliability issues when natural gas-fired power generators are not able to dispatch as a result of the gas pipeline capacity constraints."

- NESCOE Phase III Study, fall 2013

Retirements of non-gas resources increase the need for greater access to natural gas supply and no/low carbon resources that provide fuel source diversity.

ISO new england

- New England has the highest natural gas prices in the U.S.
- Spot price average over 2013 showed an 85% basis differential – or \$3.17/MMBtu – between Algonquin Citygate (\$6.90/MMBtu) and Henry Hub (\$3.73/ MMBtu).

Spot natural gas prices at major trading locations through December 31, 2013 delivery date



#### Futures Prices in New England Soar

Source: Derived from ICE data.

Ρ

ο

w

е

F

G

а

S

AJanuary and February 2014 "January and February 2013

\*Power Note: Prices in \$/MWh; 2013 shows Peak Fin-swap prices and 2014 shows peak future prices. 3P15 peak futures for Jan and Feb 2014 have not traded yet and the price is the average of the last bid and offer.

"Gas Note: Prices In s/MMBtu. Regional futures natural gas prices are the sum of the Henry Hub futures contract price plus the regional basis futures.

26

| Location                      | 2014^    | 2013*   |           |
|-------------------------------|----------|---------|-----------|
| Massachussets Hub             | \$100.00 | \$65.65 |           |
| PJM Western Hub               | \$44.35  | \$48.00 |           |
| Northwest (Mid-C)             | \$37.37  | \$34.58 |           |
| Southern California (SP-15)   | \$43.12  | \$42.63 |           |
| New England (Algonquin)       | \$11.75  | \$6.59  | $\langle$ |
| Mid-Atlantic (Dominion South) | \$3.66   | \$3.78  |           |
| Southern California Border    | \$3.95   | \$3.88  |           |
| Henry Hub                     | \$3.87   | \$3.77  |           |
|                               |          |         |           |

New England power futures for Jan/Feb 2014 were more than 2x higher than the Mid-Atlantic region...

...and natural gas price futures were more than 3x higher.

- Spot price spikes driven to a high of \$34/MMBtu in 2013, with prices in 2014 averaging \$22.53 MMBtu through 2/18/14.
- Spot prices driven to almost \$80/MMBtu as a high point.
- "The high winter prices in New England suggest a natural gas delivery system that is stretched significantly." - EIA, Feb. 7, 2014
- Record high price since data tracking began in '01 and 50% higher than same period in 2013. - *EIA*, *Feb. 21*, 2014

27



Note: Spot prices by trade date. Bidweek prices are determined during the final three trading days of the prior month.

## Daily DA and RT ISO-NE Hub Prices and Input Fuel Prices: January 1-31, 2014



## Daily DA and RT ISO-NE Hub Prices and Input Fuel Prices: February 1-27, 2014



## Winter Gas Prices Nearly Doubled in a Year



\* Algonquin Citygate price, December – February average

Chart taken from ISO NE presentation on Winter 2013/14 to NEPOOL PC, 5/2/14, Boston, MA.

30

## Electricity Prices Followed Gas Prices: Monthly Average Gas Price and RT Hub LMPs



#### Winter 2013/2014

- Energy market costs exceeded \$5 billion this past winter.
  - Compare to \$5.2 billion...for <u>ALL</u> of 2012.
- 64% of average daily real-time prices were > \$100
  28% in Winter 2012/13
- For first time in a decade, average daily price exceeded \$250...nine times
- Winter average real time price (Hub) was \$132.10
  - Up 84.4% from Winter 2012/2013 (December through March)

#### Winter 2013/2014

Coal
 Hydro
 NG / LNG

Nuclear

Oil

Other

Wind

Renewable

#### Average Fuel Use at 1800: 20 Jan-24 Jan 2014



- Natural gas pipeline constraints drove economics and system reliability needs.
- Oil "in the money"
- Gas prices exceeded oil prices 57% of winter days, compared to 18% in Winter 2012/13.

Data taken from ISO NE presentation on Winter 2013/14 to NEPOOL PC, 5/2/14, Boston, MA

#### Winter 2013/2014



- While oil produced more energy and other assets approached capacity limits, gas units produced far less than capable.
- i.e. on one cold day, at peak, gas gens produced just 3,000 of 11,000 MW capacity

## **Others' Observations About New England**

# Forbes

"The result is an <u>escalating energy</u> <u>crisis</u> in New England. Although the northeast has become the largest natural gas producing region in the United States, <u>New England currently</u> <u>has the nation's highest natural gas</u> <u>prices</u>."

William Pentland, December 5, 2013 [emphasis added]



"We have increasing confidence that the northeast gas basis blow-out vs. Henry Hub this winter will <u>reoccur in</u> <u>future years...</u>"

"... we see an argument for <u>continued</u> <u>higher gas and power prices for the</u> <u>'14/'15 winter</u>. We see the greatest uplift to the thesis as the 'end of the pipe' in Boston/New England, where Algonquin prices could further expand..."

> Global Research, April 2, 2014 [emphasis added]

http://www.forbes.com/sites/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentland/2013/12/05/has-anyone-noticed-new-englands-escalating-energy-crisis/williampentlands-escalating-energy-crisis/williampentlands-escalating-energy-crisis/williampentlands-escalating-energy-crisis/williampentlands-escalating-energy-crisis/williampentlands-escalating-energy-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalating-escalat

35



# **Existing Pipeline Expansion**



- Spectra Energy's Algonquin and Maritimes & Northeast Pipeline networks have projects in various stages of development with the opportunity for additional expansion:
  - Algonquin Incremental Market (AIM) Project (2016 in service)
  - Atlantic Bridge Project (2017 in service)
  - In partnership with Northeast Utilities, Access Northeast Project (2018 potentially in service)

Source: Spectra Energy

## **Upstream Expansion & Flow Reversals**



- Iroquois Gas Transmission Systems' (IGTS) Wright Interconnection Project is expected to provide access to additional Marcellus-based supply for the Iroquois network. The project is anticipated to be in service in 2015.
- IGTS' South-to-North Project would reverse the flow on the Iroquois system and thereby provide transportation to the Canadian border. It is proposed to be in service in 2016.

## **Alternate Supply Routes**



In conjunction with TransCanada Pipelines Limited (TCPL), Portland Natural Gas Transmission's (PNGTS) Continent-to-Coast (C2C) project may provide access to incremental gas supply from a variety of supply basins. The project is anticipated to be in service in 2016.

Source: Portland Natural Gas Transmission

## **Greenfield Pipeline Development**



- Kinder Morgan's Tennessee Gas Pipeline Northeast Energy Direct Project is proposed to be in service in 2018.
- On July 30, 2014, Kinder Morgan announced it has reach agreement with initial anchor shippers, natural gas local distribution companies, with an aggregate demand of 500,000 dekatherms/day.

Source: Kinder Morgan Energy Partners

## **Recent Analysis – EIPC's Gas-Electric Study**



According to Levitan & Associates, under the Reference Gas Demand Scenario, "model solutions reveal that deliverability *into* Massachusetts is the bottleneck, as shown in red across New York and Connecticut, reflecting the complete or near complete utilization of primary pipelines linking Marcellus with market centers in NYISO, ISO-NE and IESO." (emphasis in original) Source: Eastern Interconnection Planning Collaborative, Gas-Electric Study, Target 2 Draft Report (June 2014)

## Recent Analysis – EISPC's Gas-Electric Study



42

Source: ICF International