New England Gas Electric Focus Group

Gas-Electric Study: Phase II Results and Approach for Phase III

New England States Committee on Electricity April 19, 2013

Overview

- Phase II Results and Methodology
 - Congestion Analysis
 - Assumptions and Methodology
- Approach to Phase III
 - Scenarios and Sensitivities
 - Assumptions and Methodology
- Study Limitations
- Next Steps, Timing & Questions

Context

Phase I: Literature Review and Independent Verification Phase II: Develop Study Scope, Approach, and Assumptions

•

Phase III: Perform Computer Modeling and Cost-Benefit Analyses

- Phase I: Black & Veatch concluded that the New England natural gas infrastructure will be increasingly under pressure from demand growth from the power sector
- In Phase II, Black & Veatch has:
 - Analyzed historical gas demand in New England by sector
 - Projected growth requirements by sector for the next 15 years
 - Summarized announced pipeline expansion projects and generic infrastructure options and provided high level cost estimates for infrastructure options
 - Identified demand and power side responses
 - Identified scenarios and sensitivities for further analysis
- In Phase III, Black & Veatch will:
 - Refine cost estimates associated with potential solutions
 - Perform computer simulations to estimate benefits of potential solutions

3

Forecast Demand

Approach for Demand Forecasts

- Black & Veatch analyzed historical natural gas demand by sector in New England by State
- Residential, commercial and industrial gas demand are projected as determined by
 - Weather
 - Economic Growth
 - Population Growth
 - Efficiency Gains/Usage per Customer
 - Policy Initiatives
- Demand growth from the power generation sector is projected using a combination of production simulation model ProMod IV and fundamental natural gas model GPCM
 - Consistent fuel price from GPCM inputs into ProMod
 - Customized assumptions on technology costs, environmental policies, renewable resources, transmission, which were supported by industrial knowledge and project experience
- Black & Veatch disaggregated gas demand into local demand centers to account for different infrastructure access
- Monthly and daily variation of gas demand is constructed to provide a comprehensive profile of demand requirements

Residential Commercial & Industrial

Compound Annual Growth Rate		Connecti cut		ſ	Massachusett	S	New Hampshire			
2013-2028	Residenti	alCommercial	Industrial	Residenti	alCommercial	Industrial	Residenti	alCommercial	Industrial	
Average Customer Usage	-0.76%	-1.02%	2.80%	0.10%	-0.15%	-3.22%	0.32%	4.56%	13.28%	
No. of Customers	2.99%	3.16%	-3.10%	0.47%	2.35%	4.00%	1.51%	0.66%	-12.59%	
Projected Demand Growth	2.21%	2.11%	-0.30%	0.57%	2.20%	0.78%	1.82%	5.22%	0.69%	
2011 Consumpti on (MMcf/d)	127	126	71	356	211	119	20	25	17	
2011 Consumpti on as% of New England demand for sector	22.48%	30.06%	22.91%	63.06%	50.33%	38.52%	3.57%	6.05%	5.60%	

Compound Annual Growth Rate		Rhode Island			Maine		Vermont			
2013-2028	Residenti	alCommercial	Industrial	Residenti	alCommercial	Industrial	Residenti	alCommercial	Industrial	
Average Customer Usage	-2.30%	-2.94%	6.45%	1.66%	2.42%	22.40%	-0.07%	-0.76%	1.31%	
No. of Customers	3.42%	2.96%	-4.15%	2.52%	1.42%	-13.00%	2.84%	1.81%	-0.55%	
Projected Demand Growth	1.12%	0.02%	2.30%	4.18%	3.83%	9.40%	2.78%	1.05%	0.76%	
2011 Consumpti on (MMcf/d)	49	31	21	4	19	73	9	7	8	
2011 Consumption as % of New England demand for sector	8.59%	7.41%	6.84%	0.71%	4.48%	23.64%	1.60%	1.67%	2.50%	

6

Electric Sector

- Load Forecast
- Fuel Prices
- Environmental Compliance
- Greenhouse Gas Programs
- Renewable
 Portfolio
 Standards
- Retirements & Additions
- Incremental
 - Transmission

Analyze Congestion

Forecasted Demand vs. Capacity Limit

Basis Volatility Analysis

Tennessee Zone 6 Basis Based on Greater Boston Load Durati on Curve (20092012)

—2009-2010 **—**2010-2011 **—**2011-2012

Congestion Analysis Results: Without AIM

Congestion Analysis Results: With AIM

Frequency of Daily Load Surpassing the 75% Threshold by Region

Congestion Analysis Results

Existing Capacity

			Cor	necti cut		N	Massachusett s Rhode			Maine		New Hampshire		ire
		East	North	Southeast	Southwest	East	Southeast	West	RI	North	West	North	South	East
Total Load as% of New	2018-2019	7.6%	4.3%	0.1%	13.7%	32.5%	6.9%	5.1%	10.8%	4.2%	3.8%	0.2%	2.9%	4.8%
England Total	2023 - 2024	7.7%	4.2%	0.1%	13.7%	31.9%	6 .7%	5.0%	11.0%	4.2%	3.7%	0.2%	3.1%	5.3%
Days Exceeding 75%	2018-2019	133	15	6	2	61	29	28	92	82	128	59	107	58
Capacity	2023 - 2024	190	33	17	15	89	52	61	149	105	170	114	137	87

With AIM's Incremental Capacity

			Con	necti cut		N	/lassachusett	S	Rho de Island	Maine		New Hampshire		
		East	North	Southeast	Southwest	East	Southeast	West	RI	North	West	North	South	East
Total Load as% of New	2018-2019	7.6%	4.3%	0.1%	13.7%	32.5%	6.9%	5.1%	10.8%	4.2%	3.8%	0.2%	2.9%	4.8%
England Total	2023 - 2024	7.7%	4.2%	0.1%	13.7%	31.9%	6 .7%	5.0%	11.0%	4.2%	3.7%	0.2%	3.1%	5.3%
Days Exceeding 75%	2018-2019	27	4	0	2	34	4	28	60	82	128	59	107	58
Capacity	2023 - 2024	66	9	1	15	62	12	61	117	105	170	114	137	87

15

Approach for Phase III

Base Case

- Power Sector Assumptions
 - Load growth and energy efficiency based on CELT
 - Environmental policies trigger oil and coal retirements
 - Federal emissions program in2022
 - Each New England state achieves RPS goals
 - Later period economic capacity additions gas-based
- Natural Gas Assumptions
 - Base Case Residential, Commercial & Industrial demand growth
 - No regulation on hydraulic fracturing
 - No stricter control on usage and treatment for water used in hydraulic fracturing
 - No collapse in natural gas liquids price
 - Easter Canadian supply decline

High Demand Case

- Power Sector Assumptions
 - Increased net load growth, relative to Base Case
 - Some New England states do not attain RPS goals
 - Nuclear retirement earlier than license expiration
 - Otherwise, same as Base Case
- Natural Gas Assumptions
 - High case Residential, Commercial & Industrial demand growth with increased policy initiatives
 - Higher LNG export at Gulf Coast and West Coast, multiple terminals
 - MN&P Pipeline reversal
 - Otherwise, same as Base Case

Low Demand Case

- Power Sector Assumptions
 - Limited demand growth
 - Otherwise, same as Base Case
- Natural Gas Assumptions
 - Limited demand growth
 - Otherwise, same as Base Case

Scenarios and Sensitivities

High Demand

- Pipeline
- LNG Import
- Imported Canadian Electricity
- Colder Weather (Design Day)

Base Case

- Pipeline
- LNG Import
- Imported Canadian Electricity
- Dual Fuel and Demand Response

Low Demand

- LNG Peak Shaving
- Imported Canadian Electricity
- Dual Fuel and Demand Response
- Negative Growth

Study Limitations

- The study is designed to provided policymakers with economic analysis
 - It is not a plan
 - It will not simulate gas pressures or power flows not a hydraulic model
- The study relies on simple representations of the natural gas pipeline network & of the electric transmission system
 - Computer models use city gates (gas) & load zones (electric) to develop prices
 - Forecasts of gas market prices are on a monthly basis.
 - Forecasts of electricity prices are on an hourly basis.
- Input assumptions & cost estimates are not facts
 - Fuel prices, whether & when generators may retire or expand, implications of environmental requirements & the extent to which states achieve policy objectives are subjective
 - Assumptions in this study are based on NESCOE's best judgment & Black & Veatch's industry knowledge & project experience

Next Steps

- Late April May
 - Model Base Case and Associated Sensitivities
 - Refine Potential Solution Cost Estimates
- June
 - Model High Demand Case and Sensitivities
- July
 - Model Low Demand Case and Sensitivities
 - Synthesize Cost and Benefit Analyses
 - Analyze Policy Implications
- August-September 2013
 - Phase III Final Report issued

Questions?

For additional information:

www.nescoe.com/Gas_Supply_Study.html

BenDAntonio@nescoe.com

gaselectric.nescoe.com

